Redox Reactions

Assertion (A): 3CIO⁻ → CIO₃⁻ + 2Cl⁻ is an example of dissociation reaction.

Reason (R): ClO⁻ gets oxidised as well as reduced.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **2. Assertion (A):** A substance which gets reduced can act as reducing agent.

Reason (R): An oxidising agent itself gets oxidised.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3. Assertion (A):** Copper sulphate solution is not stored in zinc vessel.

Reason (R): Zinc forms complex with copper sulphate.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

4. Assertion (A): The Daniell cell becomes dead after sometime.

Reason (R): Oxidation potential of zinc anode decreases and that of copper cathode increases.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **5. Assertion (A):** In iodometric titration, starch is used as an indicator.

Reason (R): Starch is a polysaccharide.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **6.** Assertion (A): Oxidation state of hydrogen in H_2O is + 1 and in CaH_2 it is -1.

Reason (R): CaH₂ is metal hydride and for hydrides, hydrogen is assigned the oxidation state of -1.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

 Assertion (A): Oxidation number of C in HCHO is zero.

Reason (R): Formaldehyde is a covalent compound.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 8. Assertion (A): Oxygen has oxidation state of -2 in both O_2 and O_3 .

Reason (R): Oxygen is assigned an oxidation state of -2 in almost all its compounds.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **9.** Assertion (A): Oxidation number of phosphorus in P_4 is zero.

Reason (R): Phosphorus has oxidation state zero in all its compounds.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

10. Assertion (A): Redox reactions are also called neutralisation reactions.

Reason (R): The number of electrons gained or lost in the reaction are balanced.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 11. Assertion (A): In the titrations of Na₂CO₃ with HCl using methyl orange indicator, the volume required at the equivalence point is twice that of acid required using phenolphthalein indicator.

Reason (R): Two moles of HCl are required for complete neutralization of one mole of Na_2CO_3 .

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **12. Assertion (A):** Addition of water to a solution containing solute and solvent cannot change it's normality or molarity

Reason (R): The milliequivalent and millimoles of the solute are changed on dilution.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

13. Assertion (A): The oxidation state of central sulphur in H₂SO₅ is +6

Reason (R): No peroxy linkage is present in H₂SO₅

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **14. Assertion (A):** HNO_3 acts as oxidizing agent.

Reason (R): Oxidation no. of nitrogen is +5, no increase in oxidation no. beyond +5 can occur. The oxidation no. of HNO₃ can only decrease.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

15. Assertion (A): The oxidation state of oxygen in F_2O is +2.

Reason (R): Electronegativity of F is more than that of oxygen.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

	ANSWER KEY														
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	4	4	3	1	2	1	2	4	3	4	2	4	3	1	1

